Normal Distribution

Mort Yao

1 Maximization of Entropy

Let \(f(x)\) be a probability density function with mean \(\mu\) and variance \(\sigma^2\), and let \(X\) be a continuous random variable with density \(f(x)\). The differential entropy of \(X\) is given by \[\operatorname{H}(X) = - \int_{-\infty}^\infty f(x) \log f(x) dx\]

To maximize the entropy, notice that the following constraints hold for any pdf: \[\begin{equation} \left. \begin{aligned} \int_{-\infty}^\infty f(x) dx &= 1 \\ \int_{-\infty}^\infty (x-\mu)^2 f(x) dx &= \sigma^2 \end{aligned} \right\} \end{equation}\]

Define a function with two Lagrange multipliers: \[\mathcal{L}(x, \lambda_1, \lambda_2) = - \int_{-\infty}^\infty f(x) \log f(x) dx - \lambda_1 \left( \int_{-\infty}^\infty f(x) dx - 1 \right) - \lambda_2 \left( \int_{-\infty}^\infty (x-\mu)^2 f(x) dx - \sigma^2 \right) \]

Set the gradient of the Lagrangian to 0: \[\nabla_{x,\lambda_1,\lambda_2} \mathcal{L}(x, \lambda_1, \lambda_2) = 0\]

We get \[\frac{\partial \mathcal{L}}{\partial x} = - f(x) \left(\log f(x) + 1 + \lambda_1 + \lambda_2(x-\mu)^2 \right) = 0 \] Since it must hold for any \(f(x)\) such that \(\frac{\partial \mathcal{L}}{\partial x} = 0\), it holds that \[\begin{align*} 0 &= \log f(x) + 1 + \lambda_1 + \lambda_2(x-\mu)^2 \\ \log f(x) &= -1 - \lambda_1 - \lambda_2(x-\mu)^2 \\ f(x) &= e^{-1 - \lambda_1 - \lambda_2(x-\mu)^2} \end{align*}\] Consider the constraints: \[\begin{equation} \left. \begin{aligned} \int_{-\infty}^\infty e^{-1 - \lambda_1 - \lambda_2(x-\mu)^2} dx &= 1 \\ \int_{-\infty}^\infty (x-\mu)^2 e^{-1 - \lambda_1 - \lambda_2(x-\mu)^2} dx &= \sigma^2 \end{aligned} \right\} \end{equation}\] with solution (using Gaussian integral) \[\begin{align*} \lambda_1 &= \frac{1}{2}\log(2\pi\sigma^2) - 1 \\ \lambda_2 &= \frac{1}{2\sigma^2} \end{align*}\] We get \[\begin{align*} f(x) &= e^{-1 - \lambda_1 - \lambda_2(x-\mu)^2} \\ &= \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \end{align*}\]

which gives the probability distribution that maximizes the entropy for \(X\).

The entropy of \(X\) is given by \[\frac{1}{2} \left( \log(2\pi\sigma^2) + 1 \right)\]

2 Univariate Normal Distribution

The normal distribution (or Gaussian distribution) is the continuous probability distribution with the maximum entropy for a specified mean \(\mu\) and variance \(\sigma^2\).

pdf. \[f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}\] \[X \sim \mathcal{N}(\mu, \sigma^2)\]

Mean. \[\operatorname{E}[X] = \mu\]

Variance. \[\operatorname{Var}(X) = \sigma^2\]

Skewness. \[\operatorname{Skew}(X) = 0\]

Excess kurtosis. \[\operatorname{Kurt}(X) = 0\]

Entropy. \[\operatorname{H}(X;\sigma) = \frac{1}{2} \left( \log(2\pi\sigma^2) + 1 \right)\]

3 Multivariate Normal Distribution

The multivariate normal distribution is a generalization of the univariate normal distribution to higher dimensions, with parameters:

  • \(k\)-dimensional mean vector: \(\boldsymbol \mu = \operatorname{E}[\boldsymbol x]\).
  • \(k \times k\) covariance matrix: \(\mathbf\Sigma = \operatorname{E}[(\boldsymbol x - \boldsymbol \mu)(\boldsymbol x - \boldsymbol \mu)^\mathrm{T}]\).

pdf. \[f(\boldsymbol x) = (2\pi)^{-k/2} |\mathbf\Sigma|^{-1/2} e^{-\frac{1}{2} (\boldsymbol x - \boldsymbol\mu)^\mathrm{T} \Sigma^{-1}(\boldsymbol x - \boldsymbol\mu)}\] \[\boldsymbol x \sim \mathcal{N}_k(\boldsymbol\mu, \mathbf\Sigma)\]

Mean. \[\operatorname{E}[\boldsymbol x] = \boldsymbol\mu\]

Variance. \[\operatorname{Var}(\boldsymbol x) = \mathbf\Sigma\]

Entropy. \[\operatorname{H}(\boldsymbol x;\mathbf\Sigma) = \frac{1}{2} \left( \log(2 \pi e)^k |\mathbf\Sigma| \right)\]